Ultrafast excited-state dynamics of donor-acceptor biaryls: comparison between pyridinium and pyrylium phenolates.
نویسندگان
چکیده
The excited-state dynamics of two donor-acceptor biaryls that differ by the strength of the acceptor, a pyridinium or a pyrylium moiety, have been investigated using a combination of steady-state solvatochromic absorption, ultrafast fluorescence, as well as visible and infrared transient absorption spectroscopies. The negative solvatochromic behavior of pyridinium phenolate indicates that the permanent electric dipole moment experiences a decrease upon S1 ← S0 excitation, implying that the ground state possesses more zwitterionic character than the excited state. In contrast, pyrylium phenolate exhibits a weakly positive solvatochromic behavior corresponding to a small increase in the dipole moment upon excitation, implying more zwitterionic character in the excited than the ground state. Both compounds are therefore situated at different sides of the cyanine-limit structure, which has equally polar ground and excited states. Despite these differences, both molecules exhibit qualitatively similar excited-state properties. They are characterized by a very short fluorescence lifetime, increasing from about 1 to 20 ps, when varying solvent viscosity from 0.4 to 11 cP. There are, however, characteristic differences between the two compounds: The excited-state lifetimes of the pyrylium dye are shorter and also depend somewhat on polarity. The ensemble of spectroscopic data can be explained with a model where the emitting Franck-Condon excited state relaxes upon twisting around the single bond between the aryl units to a point where the excited- and ground-state surfaces are very close or intersect. After internal conversion to the ground state, the distorted molecule relaxes back to its equilibrium planar configuration, again largely dependent upon solvent viscosity. However, in this case, the kinetics for the pyrylium dye are slower than for the pyridinium dye and the polar solvent-induced acceleration is significantly stronger than in the excited state. This difference of kinetic behavior between the two compounds is a direct consequence of the change of the electronic structure from a normal to an overcritical merocyanine evidenced by steady-state spectroscopy.
منابع مشابه
Simulations of the Ultrafast Transient Absorption Dynamics of a Donor-Acceptor Biaryl in Solution.
A model for simulating the transient electronic absorption spectra of donor-acceptor dyads undergoing ultrafast intramolecular charge transfer in solution has been developed. It is based on the stochastic multichannel point-transition approach and includes the reorganization of high-frequency intramolecular modes (treated quantum mechanically) and of low frequency intramolecular and solvent mod...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملPhotoinduced Intramolecular Charge Transfer in Donor-Acceptor Biaryls and Resulting Applicational Aspects Regarding Fluorescent Probes and Solar Energy Conversion
Photoinduced Intramolecular Charge Transfer in Donor-Acceptor Biaryls and Resulting Applicational Aspects Regarding Fluorescent Probes and Solar Energy Conversion This study is focused on the effects of photoinduced intramolecular charge transfer (CT) in three differently twisted donor-acceptor (D-A) biphenyls. Taking into account another pair of differently twisted D-A biaryls new universal in...
متن کاملEffect of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of donor-acceptor complexes: Stochastic simulations and experiments.
The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes has been explored both theoretically and experimentally. The theoretical description involves the explicit treatment of both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The wave packet motion ...
متن کاملUltrafast excited-state electron transfer at an organic liquid/aqueous interface.
Ultrafast excited-state electron transfer has been monitored at the liquid/liquid interface for the first time. Second harmonic generation (SHG) pump/probe measurements monitored the electron transfer (ET) occurring between photoexcited coumarin 314 (C314) acceptor and dimethylaniline (DMA) donor molecules. In the treatment of this problem, translational diffusion of solute molecules can be neg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 117 49 شماره
صفحات -
تاریخ انتشار 2013